Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 357
Filter
1.
Viruses ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: covidwho-20242499

ABSTRACT

Early detection and characterization of new variants and their impacts enable improved genomic surveillance. This study aims to evaluate the subvariant distribution of Omicron strains isolated from Turkish cases to determine the rate of antiviral resistance of RdRp and 3CLpro inhibitors. The Stanford University Coronavirus Antiviral & Resistance Database online tool was used for variant analyses of the strains uploaded to GISAID as Omicron (n = 20.959) between January 2021 and February,2023. Out of 288 different Omicron subvariants, B.1, BA.1, BA.2, BA.4, BE.1, BF.1, BM.1, BN.1, BQ.1, CK.1, CL.1, and XBB.1 were the main determined subvariants, and BA.1 (34.7%), BA.2 (30.8%), and BA.5 (23.6%) were reported most frequently. RdRp and 3CLPro-related resistance mutations were determined in n = 150, 0.72% sequences, while the rates of resistance against RdRp and 3CLpro inhibitors were reported at 0.1% and 0.6%, respectively. Mutations that were previously associated with a reduced susceptibility to remdesivir, nirmatrelvir/r, and ensitrelvir were most frequently detected in BA.2 (51.3%). The mutations detected at the highest rate were A449A/D/G/V (10.5%), T21I (10%), and L50L/F/I/V (6%). Our findings suggest that continuous monitoring of variants, due to the diversity of Omicron lineages, is necessary for global risk assessment. Although drug-resistant mutations do not pose a threat, the tracking of drug mutations will be necessary due to variant heterogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Molecular Epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase
2.
J Virol ; 97(6): e0046523, 2023 Jun 29.
Article in English | MEDLINE | ID: covidwho-2326363

ABSTRACT

Coronavirus genome replication and expression are mediated by the viral replication-transcription complex (RTC) which is assembled from multiple nonstructural proteins (nsp). Among these, nsp12 represents the central functional subunit. It harbors the RNA-directed RNA polymerase (RdRp) domain and contains, at its N terminus, an additional domain called NiRAN which is widely conserved in coronaviruses and other nidoviruses. In this study, we produced bacterially expressed coronavirus nsp12s to investigate and compare NiRAN-mediated NMPylation activities from representative alpha- and betacoronaviruses. We found that the four coronavirus NiRAN domains characterized to date have a number of conserved properties, including (i) robust nsp9-specific NMPylation activities that appear to operate largely independently of the C-terminal RdRp domain, (ii) nucleotide substrate preference for UTP followed by ATP and other nucleotides, (iii) dependence on divalent metal ions, with Mn2+ being preferred over Mg2+, and (iv) a key role of N-terminal residues (particularly Asn2) of nsp9 for efficient formation of a covalent phosphoramidate bond between NMP and the N-terminal amino group of nsp9. In this context, a mutational analysis confirmed the conservation and critical role of Asn2 across different subfamilies of the family Coronaviridae, as shown by studies using chimeric coronavirus nsp9 variants in which six N-terminal residues were replaced with those from other corona-, pito- and letovirus nsp9 homologs. The combined data of this and previous studies reveal a remarkable degree of conservation among coronavirus NiRAN-mediated NMPylation activities, supporting a key role of this enzymatic activity in viral RNA synthesis and processing. IMPORTANCE There is strong evidence that coronaviruses and other large nidoviruses evolved a number of unique enzymatic activities, including an additional RdRp-associated NiRAN domain, that are conserved in nidoviruses but not in most other RNA viruses. Previous studies of the NiRAN domain mainly focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggested different functions for this domain, such as NMPylation/RNAylation of nsp9, RNA guanylyltransferase activities involved in canonical and/or unconventional RNA capping pathways, and other functions. To help resolve partly conflicting information on substrate specificities and metal ion requirements reported previously for the SARS-CoV-2 NiRAN NMPylation activity, we extended these earlier studies by characterizing representative alpha- and betacoronavirus NiRAN domains. The study revealed that key features of NiRAN-mediated NMPylation activities, such as protein and nucleotide specificity and metal ion requirements, are very well conserved among genetically divergent coronaviruses, suggesting potential avenues for future antiviral drug development targeting this essential viral enzyme.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase/metabolism , Nucleotides/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/metabolism
3.
J Infect Public Health ; 16(7): 1048-1056, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2313502

ABSTRACT

BACKGROUND: The global research community has made considerable progress in therapeutic and vaccine research during the COVID-19 pandemic. Several therapeutics have been repurposed for the treatment of COVID-19. One such compound is, favipiravir, which was approved for the treatment of influenza viruses, including drug-resistant influenza. Despite the limited information on its molecular activity, clinical trials have attempted to determine the effectiveness of favipiravir in patients with mild to moderate COVID-19. Here, we report the structural and molecular interaction landscape of the macromolecular complex of favipiravir-RTP and SARS-CoV-2 RdRp with the RNA chain. METHODS: Integrative bioinformatics was used to reveal the structural and molecular interaction landscapes of two macromolecular complexes retrieved from RCSB PDB. RESULTS: We analyzed the interactive residues, H-bonds, and interaction interfaces to evaluate the structural and molecular interaction landscapes of the two macromolecular complexes. We found seven and six H-bonds in the first and second interaction landscapes, respectively. The maximum bond length is 3.79 Å. In the hydrophobic interactions, five residues (Asp618, Asp760, Thr687, Asp623, and Val557) were associated with the first complex and two residues (Lys73 and Tyr217) were associated with the second complex. The mobilities, collective motion, and B-factor of the two macromolecular complexes were analyzed. Finally, we developed different models, including trees, clusters, and heat maps of antiviral molecules, to evaluate the therapeutic status of favipiravir as an antiviral drug. CONCLUSIONS: The results revealed the structural and molecular interaction landscape of the binding mode of favipiravir with the nsp7-nsp8-nsp12-RNA SARS-CoV-2 RdRp complex. Our findings can help future researchers in understanding the mechanism underlying viral action and guide the design of nucleotide analogs that mimic favipiravir and exhibit greater potency as antiviral drugs against SARS-CoV-2 and other infectious viruses. Thus, our work can help in preparing for future epidemics and pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , RNA-Dependent RNA Polymerase , RNA , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry
4.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2309502

ABSTRACT

COVID-19, caused by SARS-CoV-2, created a devastating outbreak worldwide and consequently became a global health concern. However, no verifiable, specifically targeted treatment has been devised for COVID-19. Several emerging vaccines have been used, but protection has not been satisfactory. The complex genetic composition and high mutation frequency of SARS-CoV-2 have caused an uncertain vaccine response. Small interfering RNA (siRNA)-based therapy is an efficient strategy to control various infectious diseases employing post-transcriptional gene silencing through the silencing of target complementary mRNA. Here, we designed two highly effective shRNAs targeting the conserved region of RNA-dependent RNA polymerase (RdRP) and spike proteins capable of significant SARS-CoV-2 replication suppression. The efficacy of this approach suggested that the rapid development of an shRNA-based therapeutic strategy might prove to be highly effective in treating COVID-19. However, it needs further clinical trials.


Subject(s)
COVID-19 , RNA Interference , SARS-CoV-2 , Humans , COVID-19/therapy , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
Int J Biol Macromol ; 242(Pt 1): 124443, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2308228

ABSTRACT

As the world undergone unpreceded time of tragedy with the corona virus, many researchers have raised to showcase their scientific contributions in terms of novel configured anti-viral drugs until now. Herein, we designed pyrimidine based nucleotides and assessed for the binding capability with SARS-CoV-2 viral replication targets of nsp12 RNA-dependent RNA polymerase and Mpro main protease. Molecular docking studies showed all the designed compounds to possess good binding affinity, with a few compounds which outperforms the control drug remdesivir GS-5743 and its active form GS-441524. Further molecular dynamics simulation studies confirmed their stability and preservation of the non-covalent interactions. Based on the present findings Ligand2-BzV_0Tyr, ligand3-BzV_0Ura, and ligand5-EeV_0Tyr showed good binding affinity with Mpro, whereas, ligand1-BzV_0Cys and Ligand2-BzV_0Tyr showed good binding affinity with RdRp, thus could act as potential lead compounds against SARS-CoV-2, which needs further validation studies. In particular, Ligand2-BzV_0Tyr could be more beneficial candidate with the dual target specificity for Mpro and RdRp.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , COVID-19 Drug Treatment , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/genetics , Molecular Dynamics Simulation , Pyrimidines/pharmacology
6.
Comput Biol Chem ; 104: 107768, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2307075

ABSTRACT

Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Nucleosides/pharmacology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Exoribonucleases/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
7.
Biosens Bioelectron ; 215: 114580, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2311736

ABSTRACT

Rational detection of syndrome coronavirus 2 (SARS-CoV-2) is crucial to prevention, control, and treatment of disease. Herein, a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on resonance energy transfer (RET) between g-C3N4 nanosheets and Ru-SiO2@folic acid (FA) nanomaterials was designed to realize ultrasensitive detection of SARS-CoV-2 virus (RdRp gene). Firstly, the unique g-C3N4 nanosheets displayed very intense and stable ECL at 460 nm, then the triple helix DNA was stably and vertically bound to g-C3N4 on electrode by high binding affinity between ssDNA and g-C3N4. Meanwhile, trace amounts of target genes were converted to a large number of output by three-dimensional (3D) DNA walker multiple amplification, and the output bridged a multifunctional probe Ru-SiO2@FA to electrode. Ru-SiO2@FA not only showed high ECL at 620 nm, but also effectively quenched g-C3N4 ECL. As a result, ECL decreased at 460 nm and increased at 620 nm, which was used to design a rational ECL biosensor for detection of SARS gene. The results show that the biosensor has excellent detection sensitivity for RdRp gene with a dynamic detection range of 1 fM to 10 nM and a limit of detection (LOD) of 0.18 fM. The dual-wavelength ratio ECL biosensor has inestimable value and application prospects in the fields of biosensing and clinical diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , DNA , Electrochemical Techniques/methods , Energy Transfer , Folic Acid , Humans , Limit of Detection , Luminescent Measurements/methods , Nanostructures , RNA-Dependent RNA Polymerase , Ruthenium , SARS-CoV-2/genetics , Silicon Dioxide
8.
Infect Genet Evol ; 111: 105434, 2023 07.
Article in English | MEDLINE | ID: covidwho-2301622

ABSTRACT

In early 2020, the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human population quickly developed into a global pandemic. SARS-CoV-2 is the etiological agent of coronavirus disease 2019 (COVID-19) which has a broad range of respiratory illnesses. As the virus circulates, it acquires nucleotide changes. These mutations are potentially due to the inherent differences in the selection pressures within the human population compared to the original zoonotic reservoir of SARS-CoV-2 and formerly naïve humans. The acquired mutations will most likely be neutral, but some may have implications for viral transmission, disease severity, and resistance to therapies or vaccines. This is a follow-up study from our early report (Hartley et al. J Genet Genomics. 01202021;48(1):40-51) which detected a rare variant (nsp12, RdRp P323F) circulating within Nevada in mid 2020 at high frequency. The primary goals of the current study were to determine the phylogenetic relationship of the SARS-CoV-2 genomes within Nevada and to determine if there are any unusual variants within Nevada compared to the current database of SARS-CoV-2 sequences. Whole genome sequencing and analysis of SARS-CoV-2 from 425 positively identified nasopharyngeal/nasal swab specimens were performed from October 2020 to August 2021 to determine any variants that could result in potential escape from current therapeutics. Our analysis focused on nucleotide mutations that generated amino acid variations in the viral Spike (S) protein, Receptor binding domain (RBD), and the RNA-dependent RNA-polymerase (RdRp) complex. The data indicate that SARS-CoV-2 sequences from Nevada did not contain any unusual variants that had not been previously reported. Additionally, we did not detect the previously identified the RdRp P323F variant in any of the samples. This suggests that the rare variant we detected before was only able to circulate because of the stay-at-home orders and semi-isolation experience during the early months of the pandemic. IMPORTANCE: SARS-COV-2 continues to circulate in the human population. In this study, SARS-CoV-2 positive nasopharyngeal/nasal swab samples were used for whole genome sequencing to determine the phylogenetic relationship of SARS-CoV-2 sequences within Nevada from October 2020 to August 2021. The resulting data is being added to a continually growing database of SARS-CoV-2 sequences that will be important for understanding the transmission and evolution of the virus as it spreads around the globe.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/epidemiology , Phylogeny , Nevada , Follow-Up Studies , Mutation , RNA-Dependent RNA Polymerase/genetics , Nucleotides , RNA , Spike Glycoprotein, Coronavirus/genetics
9.
J Hazard Mater ; 452: 131268, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2286471

ABSTRACT

In this study, we introduce an electrochemiluminescence (ECL) sensing platform based on the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). This platform combines a programmable entropy-driven cycling strategy, T7 RNA polymerase, and the CRISPR/Cas13a system to amplify the determination of the SARS-CoV-2 RdRp gene. The Ti3C2Tx-compliant ECL signaling molecule offers unique benefits when used with the ECL sensing platform to increase the assay sensitivity and the electrode surface modifiability. To obtain the T7 promoter, the SARS-CoV-2 RdRp gene may first initiate an entropy-driven cyclic amplification response. Then, after recognizing the T7 promoter sequence on the newly created dsDNA, T7 RNA polymerase starts transcription, resulting in the production of many single-stranded RNAs (ssRNAs), which in turn trigger the action of CRISPR/Cas13a. Finally, Cas13a/crRNA identifies the transcribed ssRNA. When it cleaves the ssRNA, many DNA reporter probes carrying -U-U- are cleaved on the electrode surface, increasing the ECL signal and allowing for the rapid and highly sensitive detection of SARS-CoV-2. With a detection limit of 7.39 aM, our method enables us to locate the SARS-CoV-2 RdRp gene in clinical samples. The detection method also demonstrates excellent repeatability and stability. The SARS-CoV-2 RdRp gene was discovered using the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). The developed ECL test had excellent recoveries in pharyngeal swabs and environmental samples. It is anticipated to offer an early clinical diagnosis of SARS-CoV-2 and further control the spread of the pandemic.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , COVID-19/diagnosis , Entropy , SARS-CoV-2/genetics , RNA-Dependent RNA Polymerase
10.
Int J Biol Macromol ; 226: 946-955, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2286096

ABSTRACT

The coronavirus disease 2019 has been ravaging throughout the world for three years and has severely impaired both human health and the economy. The causative agent, severe acute respiratory syndrome coronavirus 2 employs the viral RNA dependent RNA polymerase (RdRp) complex for genome replication and transcription, making RdRp an appealing target for antiviral drug development. Systematic characterization of RdRp will undoubtedly aid in the development of antiviral drugs targeting RdRp. Here, our research reveals that RdRp can recognize and utilize nucleoside diphosphates as a substrate to synthesize RNA with an efficiency of about two thirds of using nucleoside triphosphates as a substrate. Nucleoside diphosphates incorporation is also template-specific and has high fidelity. Moreover, RdRp can incorporate ß-d-N4-hydroxycytidine into RNA while using diphosphate form molnupiravir as a substrate. This incorporation results in genome mutation and virus death. It is also observed that diphosphate form molnupiravir is a better substrate for RdRp than the triphosphate form molnupiravir, presenting a new strategy for drug design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , RNA , Diphosphates , Nucleosides , RNA-Dependent RNA Polymerase/metabolism , Antiviral Agents/chemistry , Nucleotides , RNA, Viral/genetics , Eye Proteins , Nerve Tissue Proteins
11.
J Immunol Methods ; 515: 113442, 2023 04.
Article in English | MEDLINE | ID: covidwho-2269007

ABSTRACT

The RNA synthesis of porcine epidemic diarrhea virus (PEDV) is a sophisticated process performed by a multilingual viral replication complex, together with cellular factors. A key enzyme of this replication complex is RNA-dependent RNA polymerase (RdRp). However, there is limited knowledge about PEDV RdRp. In our present study, a polyclonal antibody against RdRp was prepared by using a prokaryotic expression vector pET-28a-RdRp to study the function of PEDV RdRp and provide a tool to investigate PEDV pathogenesis. In addition, the enzyme activity and half-life of PEDV RdRp were investigated. The result showed that the polyclonal antibody against PEDV RdRp was successfully prepared and was able to be used to detect PEDV RdRp by immunofluorescence and western blotting. Additionally, enzyme activity of PEDV RdRp reached nearly 2 pmol/µg/h and the half-life of PEDV RdRp was 5.47 h.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , RNA-Dependent RNA Polymerase/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Swine Diseases/diagnosis
12.
Int J Biol Macromol ; 237: 124169, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2278039

ABSTRACT

The outbreak of novel Coronavirus, an enduring pandemic declared by WHO, has consequences to an alarming ongoing public health menace which has already claimed several million human lives. In addition to numerous vaccinations and medications for mild to moderate COVID-19 infection, lack of promising medication or therapeutic pharmaceuticals remains a serious concern to counter the ongoing coronavirus infections and to hinder its dreadful spread. Global health emergencies have called for urgency for potential drug discovery and time is the biggest constraint apart from the financial and human resources required for the high throughput drug screening. However, computational screening or in-silico approaches appeared to be an effective and faster approach to discover potential molecules without sacrificing the model animals. Accumulated shreds of evidence on computational studies against viral diseases have revealed significance of in-silico drug discovery approaches especially in the time of urgency. The central role of RdRp in SARS-CoV-2 replication makes it promising drug target to curtain on going infection and its spread. The present study aimed to employ E-pharmacophore-based virtual screening to reveal potent inhibitors of RdRp as potential leads to block the viral replication. An energy-optimised pharmacophore model was generated to screen the Enamine REAL DataBase (RDB). Then, ADME/T profiles were determined to validate the pharmacokinetics and pharmacodynamics properties of the hit compounds. Moreover, High Throughput Virtual Screening (HTVS) and molecular docking (SP & XP) were employed to screen the top hits from pharmacophore-based virtual screening and ADME/T screen. The binding free energies of the top hits were calculated by conducting MM-GBSA analysis followed by MD simulations to determine the stability of molecular interactions between top hits and RdRp protein. These virtual investigations revealed six compounds having binding free energies of -57.498, -45.776, -46.248, -35.67, -25.15 and -24.90 kcal/mol respectively as calculated by the MM-GBSA method. The MD simulation studies confirmed the stability of protein ligand complexes, hence, indicating as potent RdRp inhibitors and are promising candidate drugs to be further validated and translated into clinics in future.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pharmacophore , RNA-Dependent RNA Polymerase , Molecular Dynamics Simulation
13.
Chem Commun (Camb) ; 59(7): 872-875, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2258245

ABSTRACT

Replication of RNA viruses is catalysed by virus-specific polymerases, which can be targets of therapeutic strategies. In this study, we used a selection strategy to identify endogenous RNAs from a transcriptome library derived from lung cells that interact with the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Some of the selected RNAs weakened the activity of RdRp by forming G-quadruplexes. These results suggest that certain endogenous RNAs, which potentially form G-quadruplexes, can reduce the replication of viral RNAs.


Subject(s)
COVID-19 , G-Quadruplexes , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , DNA-Directed RNA Polymerases/genetics , Antiviral Agents/pharmacology
14.
Molecules ; 28(6)2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2272021

ABSTRACT

The unusual and interesting architecture of the catalytic chamber of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) was recently explored using Cryogenic Electron Microscopy (Cryo-EM), which revealed the presence of two distinctive binding cavities within the catalytic chamber. In this report, first, we mapped out and fully characterized the variations between the two binding sites, BS1 and BS2, for significant differences in their amino acid architecture, size, volume, and hydrophobicity. This was followed by investigating the preferential binding of eight antiviral agents to each of the two binding sites, BS1 and BS2, to understand the fundamental factors that govern the preferential binding of each drug to each binding site. Results showed that, in general, hydrophobic drugs, such as remdesivir and sofosbuvir, bind better to both binding sites than relatively less hydrophobic drugs, such as alovudine, molnupiravir, zidovudine, favilavir, and ribavirin. However, suramin, which is a highly hydrophobic drug, unexpectedly showed overall weaker binding affinities in both binding sites when compared to other drugs. This unexpected observation may be attributed to its high binding solvation energy, which disfavors overall binding of suramin in both binding sites. On the other hand, hydrophobic drugs displayed higher binding affinities towards BS1 due to its higher hydrophobic architecture when compared to BS2, while less hydrophobic drugs did not show a significant difference in binding affinities in both binding sites. Analysis of binding energy contributions revealed that the most favorable components are the ΔEele, ΔEvdw, and ΔGgas, whereas ΔGsol was unfavorable. The ΔEele and ΔGgas for hydrophobic drugs were enough to balance the unfavorable ΔGsol, leaving the ΔEvdw to be the most determining factor of the total binding energy. The information presented in this report will provide guidelines for tailoring SARS-CoV-2 inhibitors with enhanced binding profiles.


Subject(s)
COVID-19 , Humans , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/metabolism , RNA, Viral , Suramin , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Molecular Docking Simulation
15.
Eur J Med Chem ; 252: 115292, 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2251692

ABSTRACT

The SARS-CoV-2 pandemic is considered as one of the most disastrous pandemics for human health and the world economy. RNA-dependent RNA polymerase (RdRp) is one of the key enzymes that control viral replication. RdRp is an attractive and promising therapeutic target for the treatment of SARS-CoV-2 disease. It has attracted much interest of medicinal chemists, especially after the approval of Remdesivir. This study highlights the most promising SARS-CoV-2 RdRp repurposed drugs in addition to natural and synthetic agents. Although many in silico predicted agents have been developed, the lack of in vitro and in vivo experimental data has hindered their application in drug discovery programs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA-Dependent RNA Polymerase , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA, Viral/genetics
16.
Talanta ; 259: 124490, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2249477

ABSTRACT

Coronavirus disease 2019 is one of the global health problems. Herein, a highly sensitive electrochemical biosensor has been designed to detect the RNA-dependent RNA polymerase (RdRP) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (SARS-CoV-2 RdRP). Herein, the surface-initiated reversible-addition-fragmentation-chain-transfer polymerization was used to amplify the electrochemical signal. To do that, the thiol-terminated peptide nucleic acid (PNA) probes were first immobilized on the surface of a screen-printed electrode modified with reduced graphene oxide-gold nanocomposite and then the fixed concentration of the SARS-CoV-2 RdRP was added to the electrode surface to interact with PNA probes. Subsequently, the Zr 4+ ions were added to interact with the phosphate groups of the SARS-CoV-2 RdRP. It allowed us to polymerase the ferrocenylmethyl methacrylate (FcMMA) and 4-cyano-4-(phenylcarbonothioylthio)-pentanoic acid on the SARS-CoV-2 RdRP chain. Since the poly-FcMMA has an electrochemical signal, the response of the PNA-based sensor to SARS-CoV-2 RdRP was increased in the range of 5-500 aM. The limit of detection was calculated to be 0.8 aM which is lower than the previous sensor for SARS-CoV-2 RdRP detection. The proposed PNA-based sensor showed high selectivity to the SARS-CoV-2 RdRP in the presence of the gene fragments of influenza A and Middle East respiratory syndrome coronavirus.


Subject(s)
Biosensing Techniques , COVID-19 , Peptide Nucleic Acids , Humans , SARS-CoV-2 , Polymerization , RNA-Dependent RNA Polymerase , Biosensing Techniques/methods , Electrochemical Techniques/methods
17.
Biochem Pharmacol ; 205: 115279, 2022 11.
Article in English | MEDLINE | ID: covidwho-2287294

ABSTRACT

The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.


Subject(s)
COVID-19 Drug Treatment , Humans , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Pandemics , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry
18.
Intervirology ; 65(4): 181-187, 2022.
Article in English | MEDLINE | ID: covidwho-2285612

ABSTRACT

INTRODUCTION: The ongoing spread of pandemic coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of growing concern. Rapid diagnosis and management of SARS-CoV-2 are crucial for controlling the outbreak in the community. Here, we report the development of a first rapid-colorimetric assay capable of detecting SARS-CoV-2 in the human nasopharyngeal RNA sample in less than 30 min. METHOD: We utilized a nanomaterial-based optical sensing platform to detect RNA-dependent RNA polymerase gene of SARS-CoV-2, where the formation of oligo probe-target hybrid led to salt-induced aggregation and change in gold-colloid color from pink to blue visibility range. Accordingly, we found a change in colloid color from pink to blue in assay containing nasopharyngeal RNA sample from the subject with clinically diagnosed COVID-19. The colloid retained pink color when the test includes samples from COVID-19 negative subjects or human papillomavirus-infected women. RESULTS: The results were validated using nasopharyngeal RNA samples from positive COVID-19 subjects (n = 136). Using real-time polymerase chain reaction as gold standard, the assay was found to have 85.29% sensitivity and 94.12% specificity. The optimized method has detection limit as little as 0.5 ng of SARS-CoV-2 RNA. CONCLUSION: We found that the developed assay rapidly detects SARS-CoV-2 RNA in clinical samples in a cost-effective manner and would be useful in pandemic management by facilitating mass screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , RNA, Viral/analysis , Pandemics , RNA-Dependent RNA Polymerase , Sensitivity and Specificity
19.
J Biomol Struct Dyn ; 40(13): 6039-6051, 2022 08.
Article in English | MEDLINE | ID: covidwho-2272318

ABSTRACT

RNA-dependent RNA polymerase (RdRp), also called nsp12, is considered a promising but challenging drug target for inhibiting replication and hence, the growth of various RNA-viruses. In this report, a computational study is performed to offer insights on the binding of Remdesivir and Galidesivir with SARS-CoV2 RdRp with natural substrate, ATP, as the control. It was observed that Remdesivir and Galidesivir exhibited similar binding energies for their best docked poses, -6.6 kcal/mole and -6.2 kcal/mole, respectively. ATP also displayed comparative and strong binding free energy of -6.3 kcal/mole in the catalytic site of RdRp. However, their binding locations within the active site are distinct. Further, the interaction of catalytic site residues (Asp760, Asp761, and Asp618) with Remdesivir and Galidesivir is comprehensively examined. Conformational changes of RdRp and bound molecules are demonstrated using 100 ns explicit solvent simulation of the protein-ligand complex. Simulation suggests that Galidesivir binds at the non-catalytic location and its binding strength is relatively weaker than ATP and Remdesivir. Remdesivir also binds at the catalytic site and showed high potency to inhibit the function of RdRp. Binding of co-factor units nsp7 and nsp8 with RdRp (nsp12) complexed with Remdesivir and Galidesivir was also examined. MMPBSA binding energy for all three complexes has been computed across the 100 ns simulation trajectory. Overall, this study suggests, Remdesivir has anti-RdRp activity via binding at a catalytic site. In contrast, Galidesivir may not have direct anti-RdRp activity but it can induce a conformational change in the RNA polymerase.


Subject(s)
Antiviral Agents , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Adenosine Triphosphate/metabolism , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
20.
Comb Chem High Throughput Screen ; 25(14): 2413-2428, 2022.
Article in English | MEDLINE | ID: covidwho-2251463

ABSTRACT

Favipiravir is a potential antiviral drug undergoing clinical trials to manage various viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Favipiravir possesses antiviral properties against RNA viruses, including SARS-CoV-2. Unfortunately, these viruses do not have authorized antiviral drugs for the management of diseases resulting from their infection, hence the dire need to accentuate the discovery of antiviral drugs that are efficacious and have a broad spectrum. Favipiravir acts primarily by blocking inward and outward movements of the virus from cells. Favipiravir is a prodrug undergoing intracellular phosphorylation and ribosylation to form an active form, favipiravir-RTP, which binds viral RNA-dependent RNA polymerase (RdRp). Considering the novel mechanism of favipiravir action, especially in managing viral infections, it is vital to pay more attention to the promised favipiravir hold in the management of SARS-CoV-2, its efficacy, and dosage regimen, and interactions with other drugs. In conclusion, favipiravir possesses antiviral properties against RNA viruses, including COVID- 19. Favipiravir is effective against SARS-CoV-2 infection through inhibition of RdRp. Pre-clinical and large-scalp prospective studies are recommended for efficacy and long-term safety of favipiravir in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Viruses , Humans , SARS-CoV-2 , Prospective Studies , Amides/pharmacology , Amides/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase
SELECTION OF CITATIONS
SEARCH DETAIL